Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Hepatology ; 74(4): 1825-1844, 2021 10.
Article in English | MEDLINE | ID: covidwho-1372726

ABSTRACT

BACKGROUND AND AIMS: NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS: We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION: Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.


Subject(s)
End Stage Liver Disease/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Organoids/metabolism , Adult , Aged , Biopsy , COVID-19/complications , COVID-19/virology , Cell Differentiation/immunology , End Stage Liver Disease/immunology , Female , Gene Expression Profiling , Healthy Volunteers , Hepatocytes/immunology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Liver/cytology , Liver/immunology , Liver Regeneration , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/virology , Organoids/immunology , SARS-CoV-2/immunology , Up-Regulation/immunology
2.
Front Immunol ; 12: 660179, 2021.
Article in English | MEDLINE | ID: covidwho-1264332

ABSTRACT

The complex interplay between the gut microbiota, the intestinal barrier, the immune system and the liver is strongly influenced by environmental and genetic factors that can disrupt the homeostasis leading to disease. Among the modulable factors, diet has been identified as a key regulator of microbiota composition in patients with metabolic syndrome and related diseases, including the metabolic dysfunction-associated fatty liver disease (MAFLD). The altered microbiota disrupts the intestinal barrier at different levels inducing functional and structural changes at the mucus lining, the intercellular junctions on the epithelial layer, or at the recently characterized vascular barrier. Barrier disruption leads to an increased gut permeability to bacteria and derived products which challenge the immune system and promote inflammation. All these alterations contribute to the pathogenesis of MAFLD, and thus, therapeutic approaches targeting the gut-liver-axis are increasingly being explored. In addition, the specific changes induced in the intestinal flora may allow to characterize distinctive microbial signatures for non-invasive diagnosis, severity stratification and disease monitoring.


Subject(s)
Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Liver/immunology , Metabolic Syndrome/immunology , Non-alcoholic Fatty Liver Disease/immunology , Animals , CCR5 Receptor Antagonists/therapeutic use , Dysbiosis/immunology , Dysbiosis/microbiology , Humans , Imidazoles/therapeutic use , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Liver/metabolism , Liver/pathology , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Sulfoxides/therapeutic use
3.
PLoS One ; 15(10): e0240400, 2020.
Article in English | MEDLINE | ID: covidwho-840685

ABSTRACT

BACKGROUND & AIMS: Although metabolic risk factors are associated with more severe COVID-19, there is little evidence on outcomes in patients with non-alcoholic fatty liver disease (NAFLD). We here describe the clinical characteristics and outcomes of NAFLD patients in a cohort hospitalised for COVID-19. METHODS: This study included all consecutive patients admitted for COVID-19 between February and April 2020 at Imperial College Healthcare NHS Trust, with either imaging of the liver available dated within one year from the admission or a known diagnosis of NAFLD. Clinical data and early weaning score (EWS) were recorded. NAFLD diagnosis was based on imaging or past medical history and patients were stratified for Fibrosis-4 (FIB-4) index. Clinical endpoints were admission to intensive care unit (ICU)and in-hospital mortality. RESULTS: 561 patients were admitted. Overall, 193 patients were included in the study. Fifty nine patients (30%) died, 9 (5%) were still in hospital, and 125 (65%) were discharged. The NAFLD cohort (n = 61) was significantly younger (60 vs 70.5 years, p = 0.046) at presentation compared to the non-NAFLD (n = 132). NAFLD diagnosis was not associated with adverse outcomes. However, the NAFLD group had higher C reactive protein (CRP) (107 vs 91.2 mg/L, p = 0.05) compared to non-NAFLD(n = 132). Among NAFLD patients, male gender (p = 0.01), ferritin (p = 0.003) and EWS (p = 0.047) were associated with in-hospital mortality, while the presence of intermediate/high risk FIB-4 or liver cirrhosis was not. CONCLUSION: The presence of NAFLD per se was not associated with worse outcomes in patients hospitalised for COVID-19. Though NAFLD patients were younger on admission, disease stage was not associated with clinical outcomes. Yet, mortality was associated with gender and a pronounced inflammatory response in the NAFLD group.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/mortality , Non-alcoholic Fatty Liver Disease/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Age Factors , Aged , Betacoronavirus , COVID-19 , Cohort Studies , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Female , Hospital Mortality , Humans , Liver/pathology , London/epidemiology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/pathology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Sex Factors
4.
Eur J Clin Invest ; 50(10): e13338, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-830092

ABSTRACT

BACKGROUND: Initial evidence from China suggests that most vulnerable subjects to COVID-19 infection suffer from pre-existing illness, including metabolic abnormalities. The pandemic characteristics and high-lethality rate of COVID-19 infection have raised concerns about interactions between virus pathobiology and components of the metabolic syndrome. METHODS: We harmonized the information from the recent existing literature on COVID-19 acute pandemic and mechanisms of damage in non-alcoholic fatty liver disease (NAFLD), as an example of chronic (non-communicable) metabolic pandemic. RESULTS: COVID-19-infected patients are more fragile with underlying metabolic illness, including hypertension, cardiovascular disease, type 2 diabetes, chronic lung diseases (e.g. asthma, chronic obstructive pulmonary disease and emphysema) and metabolic syndrome. During metabolic abnormalities, expansion of metabolically active fat ('overfat condition') parallels chronic inflammatory changes, development of insulin resistance and accumulation of fat in configuring NAFLD. The deleterious interplay of inflammatory pathways chronically active in NAFLD and acutely in COVID-19-infected patients, can explain liver damage in a subgroup of patients and might condition a worse outcome in metabolically compromised NAFLD patients. In a subgroup of patients with NAFLD, the underlying liver fibrosis might represent an additional and independent risk factor for severe COVID-19 illness, irrespective of metabolic comorbidities. CONCLUSIONS: NAFLD can play a role in the outcome of COVID-19 illness due to frequent association with comorbidities. Initial evidences suggest that increased liver fibrosis in NAFLD might affect COVID-19 outcome. In addition, long-term monitoring of post-COVID-19 NAFLD patients is advisable, to document further deterioration of liver damage. Further studies are required in this field.


Subject(s)
Coronavirus Infections/epidemiology , Metabolic Syndrome/epidemiology , Non-alcoholic Fatty Liver Disease/epidemiology , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cytokine Release Syndrome/immunology , Humans , Inflammation/immunology , Insulin Resistance , Liver/immunology , Liver/metabolism , Metabolic Syndrome/immunology , Metabolic Syndrome/metabolism , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL